Growing potential for cancer immunotherapy
Immune therapies have rapidly gained the attention of the medical community as a new hope for cancer treatment. Arguably, the intersection of immunology and oncology represents one of the most promising approaches, which may have a significant impact for patients with cancer today.
Not only have some of these treatments shown potential in helping the patient’s body fight the disease in a targeted way, but many of the side effects may be less severe than those associated with some other therapeutic approaches. However, as only 30% of tumors are infiltrated with T cells, the immune system’s most potent weapons, it is crucial for researchers to find ways to induce T-cell immunity in patients in order to broaden the number of responders to the currently available cancer immune therapies. One promising strategy is to circumvent the tumor’s immune escape tactics by directly targeting active T cells to tumors, hence triggering cell death.
In December, Amgen’s first-in-class bispecific T cell engager (BiTE®) blinatumomab was given US FDA approval for the treatment of patients with Philadelphia chromosome-negative (Ph-) relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Blinatumomab, which is currently under review by European regulatory authorities, directs T cells to blood cancer cells carrying the CD19 antigen. BITEs as a platform technology offers an option to trigger T cell responses against a multitude of tumors carrying different antigens.
Alternatively, chimeric antigen receptors (CAR) T-cell immunotherapies offer the potential to reprogram a patient’s T cells and transform them into cancer-fighting agents. When combined with certain targets, CAR-Ts could create a new promising therapeutic approach to fight cancer. Results obtained so far are promising, with a high number of long-lasting response rates, which may offer new options for patients. Focusing on multiple pathways and combination therapies, Amgen is working with a partner to develop the next generation of CAR-T cell therapies.
Oncolytic immunotherapies are another novel treatment paradigm, in which a virus is modified to replicate efficiently in tumors – but not in normal tissue – and to trigger a systemic anti-tumor response by inducing necrotic tumor cell death. Based on Phase 3 data, Amgen has filed for approval of its oncolytic immunotherapy talimogene laherparepvec (T-VEC) in the US and Europe for metastatic melanoma.
Researchers are also investigating the most effective and safe combinations of immunotherapeutic agents. A patient and biology first approach, where one first explores the complex molecular pathways of disease before determining the medicine or modality, may deliver optimal efficacy and safety for the patient and will drive progress in the promising immunotherapy research area
Dr. David Reese
is senior vice president, Translational Sciences, responsible for Medical Sciences, Comparative Biology and Safety Sciences, and Pharmacokinetics and Drug Metabolism at Amgen. Prior to joining Amgen in 2005, he was director of Clinical Research for the Breast Cancer International Research Group (BCIRG) and a co-founder, president and chief medical officer of Translational Oncology Research International (TORI), a not-for-profit academic clinical research organization.